| [1]樊红卫, 张旭辉, 曹现刚, 等.智慧矿山背景下我国煤矿机械故障诊断研究现状与展望[J].振动与冲击, 2020, 39(24):194-204[2]尹玉玺, 周常飞, 史春祥, 等.采煤机摇臂齿轮箱故障诊断研究现状及展望[J].煤炭工程, 2022, 54(11):107-112[3] Zhong G, Dong L, Ye O.Fault Diagnosis Method for Shearer Equipment of PCA-BP_Adaboost[C]//2018 11th International Symposium on Computational Intelli-gence and Design (ISCID).IEEE, 2018, 2:128-131.[4]郝尚清, 庞新宇, 王雪松, 等.基于盲源分离的采煤机摇臂轴承故障诊断方法[J].煤炭学报, 2015, 40(11):2509-2513[5]任众, 张铁山.粒子群优化的支持向量机在截割部行星齿轮减速器故障诊断中的应用[J].机械强度, 2018, 40(06):1293-1296[6]孙明波, 马秋丽, 张炎亮, 雷俊辉.基于-的采煤机滚动轴承故障诊断方法[J].工矿自动化, 2018, 44(03):81-86[7] Mao Q, Zhang Y, Zhang X, et al.Accurate Fault Location Method of the Mechanical Transmission System of Shearer Ranging Arm[J].IEEE Access, 2020, 8: 202260-202273.[8]Li Z, Jiang Y, Wang X, et al.Multi-mode separation and nonlinear feature extraction of hybrid gear failures in coal cutters using adaptive nonstationary vibration analysis[J].Nonlinear Dynamics, 2016, 84(1):295-310[9]李益兵, 王磊, 江丽.基于改进深度置信网络的滚动轴承故障诊断[J].振动与冲击, 2020, 39(05):89-96[10] Chen S, Yu J, Wang S.One-dimensional convolutional auto-encoder-based feature learning for fault di-agnosis of multivariate processes[J]. Journal of Process Control, 2020, 87: 54-67.[11] Renxiang Chen, Xin Huang, Lixia Yang, et al.Intelligent fault diagnosis method of planetary gearboxes based on convolution neural network and discrete wavelet transform[J]. Computers in In-dustry, 2019, 106.[12]González-Mu?iz A, Díaz I, Cuadrado A A.DCNN for condition monitoring and fault detection in rotating machines and its contribution to the understanding of machine nature[J].Heliyon, 2020, 6(2):e03395-[13]Zhang W, Peng G, Li C, et al.A new deep learning model for fault diagnosis with good anti-noise and domain adaptation ability on raw vibration signals[J].Sensors, 2017, 17(2):425-[14] Huang G, Liu Z, Van Der Maaten L, et al.Densely connected convolutional networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 4700-4708.[15]院老虎, 连冬杉, 张亮, 等.基于密集连接卷积网络和支持向量机的飞行器机械部件故障诊断[J].吉林大学学报, 2021, 51(05):1635-1641[16]赵志宏, 赵敬娇, 李晴, 李乐豪.基于一维密集连接卷积网络的故障诊断研究[J].西南大学学报自然科学版, 2020, 42(12):25-33[17]郭如雁, 彭敏放, 曹振其.基于-的变压器故障诊断[J].电工电能新技术, 2021, 40(01):61-69[18]牛锐祥, 丁华, 施瑞, 孟祥龙.改进密集连接卷积网络的滚动轴承故障诊断方法[J].振动与冲击, 2022, 41(11):252-258[19]姜家国, 郭曼利, 杨思国.基于和的滚动轴承故障诊断方法[J].工矿自动化, 2021, 47(08):84-89[20] Fran?ois Chollet.Xception: Deep Learning with Depthwise Separable Convolutions.[J]. CoRR, 2016, abs/1610.02357. |